
Research Article

Pseudomonas Pigments Biosynthesis Functions and Industrial Applications

Talib.S. A-Rubaye

Department of Biotechnology, College of Science, University of Baghdad, Iraq

Key Words

Pigmentation,
Bacteria,
Bioproduction,
Secondary Metabolites

Corresponding Author

Talib.S. A-Rubaye,
Department of Biotechnology, College of
Science, University of Baghdad, Iraq
Baghdadbaghdad1955@gmail.com

Received: 10th November 2025

Accepted: 12th December 2025

Published: 26th January 2026

Citation: Talib.S. A-Rubaye, 2026. Pseudomonas Pigments Biosynthesis Functions and Industrial Applications. Res. J. Microbiol. Biotechnol., 6: 10-13, doi: 10.36478/acerjmb.2026.10.13

Copy Right: © 2026. Talib.S. A-Rubaye. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Pseudomonas species are well known for producing a wide range of biologically active pigments with important ecological and industrial significance. These pigments include pyocyanin, pyoverdine, pyorubin, and pyomelanin, which are classified as secondary metabolites. Pigment biosynthesis in *Pseudomonas* is tightly regulated by genetic pathways such as phenazine and non-ribosomal peptide synthetase systems. Functionally, these pigments contribute to iron acquisition, antimicrobial activity, oxidative stress regulation, and biofilm formation. Pyoverdine plays a key role as a siderophore under iron-limited conditions, while pyocyanin is involved in virulence and redox balance. In addition, pyomelanin provides protection against environmental stresses. Due to their diverse bioactivities, *Pseudomonas* pigments have attracted attention for pharmaceutical, agricultural, and environmental applications. They exhibit potential as antimicrobial agents, biocontrol tools, and electron mediators in microbial fuel cells. Fluorescent pigments are also useful in diagnostic applications. Despite their promising potential, safety and toxicity considerations remain critical for industrial utilization.

INTRODUCTION

The genus *Pseudomonas* comprises a diverse group of Gram-negative bacteria widely distributed in soil, water, and clinical environments. Many *Pseudomonas* species are characterized by their ability to produce distinctive pigments as secondary metabolites. These pigments play essential roles in bacterial physiology, environmental adaptation, and pathogenicity. Among the most studied pigments are pyocyanin, pyoverdine, pyorubin, and pyomelanin. The biosynthesis of these pigments is genetically regulated through complex metabolic pathways such as phenazine biosynthesis and non-ribosomal peptide synthetase systems^[1]. Functionally, *Pseudomonas* pigments are involved in iron acquisition, redox homeostasis, antimicrobial activity, and biofilm development. In pathogenic species, pigments contribute significantly to virulence and host tissue damage. Beyond their biological roles, these pigments have gained increasing attention for their potential industrial and biomedical applications. They offer promising uses as natural antimicrobials, fluorescent biomarkers, and bioactive compounds. Therefore, understanding the biosynthesis and functions of *Pseudomonas* pigments is essential for their safe and effective exploitation in various biotechnological fields^[2].

Pigment Production and Functional Roles in *Pseudomonas*: *Pseudomonas* species produce several characteristic pigments as secondary metabolites that play important biological roles. Pyocyanin (blue-green pigment) functions in redox balance and contributes to virulence by generating reactive oxygen species and inhibiting competing microorganisms. Pyoverdine (yellow-green fluorescent pigment) acts as a high-affinity siderophore responsible for iron acquisition under iron-limited conditions. Pyorubin (red pigment) exhibits antimicrobial activity and is involved in bacterial competition. Pyomelanin (brown-black pigment) provides protection against oxidative stress, ultraviolet radiation, and environmental stresses. Pigment production is regulated by genetic pathways and quorum sensing systems and is influenced by environmental conditions such as nutrient availability. Collectively, these pigments enhance bacterial survival, adaptability, and ecological fitness, while also offering potential industrial and biomedical applications^[3].

Regulation of Pigment Production in *Pseudomonas*: Pigment production in *Pseudomonas* species is a tightly regulated process controlled by genetic, environmental, and physiological factors. The expression of pigment

biosynthetic genes is influenced by quorum sensing systems, which allow bacterial cells to coordinate pigment synthesis in response to population density^[4]. Environmental conditions such as iron availability, pH, temperature, and oxygen levels play a critical role in determining the type and quantity of pigments produced. For instance, pyoverdine synthesis is strongly induced under iron-limiting conditions, whereas pyocyanin production is enhanced during stationary growth phases. Regulatory networks involving transcriptional regulators and global stress response systems further modulate pigment production. Additionally, nutrient composition of growth media can significantly affect pigment yield. Understanding these regulatory mechanisms is essential for optimizing pigment production for industrial and biomedical applications and for controlling pigment-associated virulence in pathogenic *Pseudomonas* strains, as shown in Fig. 1.^[5]

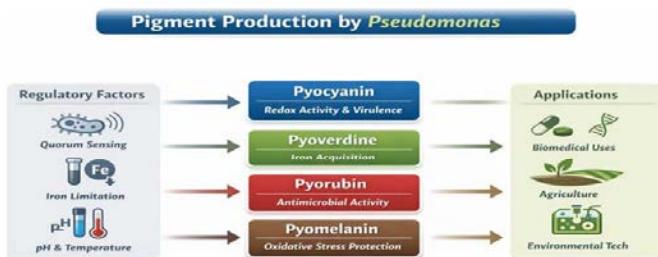


Fig. 1: Regulatory factors and functional roles of pigments in *Pseudomonas*^[6].

Environmental Factors Affecting Pigment Yield: Pigment yield in *Pseudomonas* species is strongly influenced by various environmental factors that regulate metabolic activity and gene expression. Iron availability is one of the most critical factors, as iron limitation significantly enhances the production of siderophore pigments such as pyoverdine. Temperature and pH also affect pigment synthesis by influencing enzyme activity and cellular growth; optimal pigment production is often observed at neutral to slightly alkaline pH and moderate temperatures. Oxygen availability plays an important role, particularly in the production of redox-active pigments like pyocyanin. Additionally, nutrient composition and carbon source in the growth medium can markedly alter pigment yield. Quorum sensing mechanisms further integrate environmental signals with population density to modulate pigment production. Understanding these factors is essential for optimizing pigment yield in laboratory and industrial-scale applications^[7].

Role of *Pseudomonas* Pigments in Microbial Competition: *Pseudomonas* pigments play a crucial role in inhibiting competing microorganisms in their environment. Pyocyanin generates reactive oxygen species that suppress the growth of neighboring bacteria and fungi. Pyoverdine sequesters iron, limiting its availability to other microbes. Phenazine pigments exhibit broad-spectrum antimicrobial activity, providing a competitive advantage. Through these mechanisms, pigments help *Pseudomonas* establish and maintain dominance in diverse ecological niches, as shown in Fig. 2. ^[8]

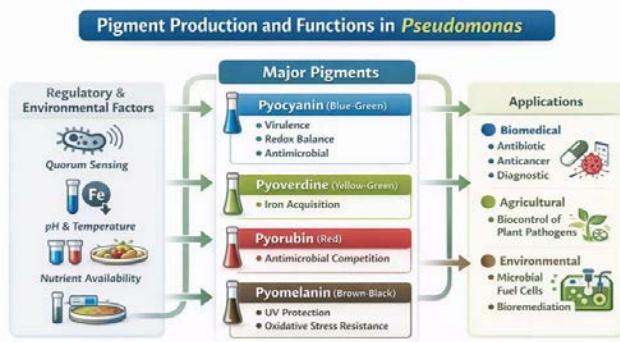


Fig. 2: Pigment production and functions in *Pseudomonas*.^[9]

Biosynthesis of *Pseudomonas* Pigments: The biosynthesis of pigments in *Pseudomonas* species involves complex, genetically regulated pathways. Pyocyanin is synthesized via the phenazine biosynthetic pathway, starting from chorismic acid and involving phz genes. Pyoverdine is produced through non-ribosomal peptide synthetase (NRPS) systems and functions as a siderophore under iron-limited conditions. Pyomelanin is generated through the tyrosine degradation pathway, where homogentisic acid polymerizes to form the brown-black pigment. Pyorubin biosynthesis, although less studied, is linked to phenazine-related metabolic routes. These pathways are tightly controlled by environmental cues, quorum sensing, and nutrient availability, ensuring that pigment production is optimized according to cellular needs and ecological conditions.^[10]

Applications of *Pseudomonas* Pigments: *Pseudomonas* pigments have versatile applications across biomedical, agricultural, and environmental fields. In biomedicine, pyocyanin and phenazine derivatives show antimicrobial, antifungal, and anticancer activities, while pyoverdine fluorescence is used in

diagnostic assays. In agriculture, pigments act as biocontrol agents, suppressing plant pathogens and enhancing soil health. Environmentally, pigments like pyocyanin participate in microbial fuel cells, aiding electron transfer, and contribute to bioremediation by degrading pollutants. Additionally, pigments are explored as natural dyes for food, textiles, and cosmetics, offering eco-friendly alternatives to synthetic colorants. These wide-ranging applications highlight the multifunctional potential of *Pseudomonas* pigments, though safe handling and toxicity management remain important.^[11]

REFERENCES

1. D. Camilios-Neto, Nascimento R.R.d., Ratko J., Caldas Pan, N., Casagrande, R., Verri, W.A., Vignoli, J.A. *Pseudomonas aeruginosa: A Bacterial Platform for Biopharmaceutical Production*. Future Pharmacol. 2024, 4:892-918.
2. S. Qin, Xiao .W, Zhou .C, Pu .Q, Deng .X, Lan .L, Liang .H, Song .X, Wu .M. *Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics*. Signal Transduct Target Ther. 2022, 7:199. doi: 10.1038/s41392-022-01056-1.
3. A.A. Abdelaziz, Kamer .A.M.A, Al-Monofy .K.B, Al-Madboly .I.A. *Pseudomonas aeruginosa's greenish-blue pigment pyocyanin: its production and biological activities*. Microb Cell Fact. 2023, 22:110. doi: 10.1186/s12934-023-02122-1.
4. V. Antonic, Stojadinovic .A, Zhang .B, Izadjo .M.J, Alavi .M. *Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of *Staphylococcus aureus**. Infect Drug Resist. 2013, 6:175-186. doi: 10.2147/IDR.S49039.
5. J. Baltenneck, , Reverchon S., Hommais F. *Quorum Sensing Regulation in Phytopathogenic Bacteria*. Microorganisms 2021, 9: 239. <https://doi.org/10.3390/microorganisms9020239>
6. M. Sultan, Arya R., Kim K.K. *Roles of Two-Component Systems in *Pseudomonas aeruginosa* Virulence*. Int. J. Mol. Sci. 2021, 22: 12152. <https://doi.org/10.3390/ijms222212152>.
7. A.A. Reinhart, Oglesby-Sherrouse A.G., *Regulation of *Pseudomonas aeruginosa* Virulence by Distinct Iron Sources*. Genes 2016, 7: 126. <https://doi.org/10.3390/genes7120126>.
8. A. Touati, Ibrahim N.A., Tighilt L., Idres, T. *Anti-QS Strategies Against *Pseudomonas aeruginosa* Infections*. Microorganisms 2025, 13: 1838. <https://doi.org/10.3390/microorganisms13081838>.
9. C. Lluch, Callao V., and Olivares J. *Pigment production by *Pseudomonas* reptilivora*. Archiv. Mikrobiol. 1973, 93: 239-243. <https://doi.org/10.1007/BF00412023>.

10. G.S. Byng, Eustice D.C., Jensen R.A. Biosynthesis of phenazine pigments in mutant and wild-type cultures of *Pseudomonas aeruginosa*. *J Bacteriol.* 1979, 138: 846-52. doi: 10.1128/jb.138.3.846-852.1979.
11. S.B. Mudaliar, Bharath Prasad A.S. A biomedical perspective of pyocyanin from *Pseudomonas aeruginosa*: its applications and challenges. *World J Microbiol Biotechnol.* 2024, 40:90. doi: 10.1007/s11274-024-03889-0.