

Research Article

Formulation and Development of Garcina Indica Nanosuspension for Weight Loss

¹Ahmad AB Yosef Kinani and ²Mohammed H. Al-Bayati

^{1,2}Department of Pharmaceutical, Al-Farahidi University, College of Pharmacy, Iraq

Key Words

Garcinia indica, nanosuspension, hydroxycitric acid (HCA), tween 80, poloxamer 407, zeta potential, SEM

Corresponding Author

Ahmad AB Yosef Kinani,
Department of Pharmaceutical,
Al-Farahidi University, College of
Pharmacy, Iraq
ahmadyosef75@gmail.com

Received: 25th May 2025 Accepted: 10th June 2025 Published: 30th July 2025

Citation: Ahmad AB Yosef Kinani and Mohammed H. Al-Bayati, 2025. Formulation and Development of *Garcina Indica* Nanosuspension for Weight Loss. J. Res. Stud. Biosci., 5: 23-29, doi: 10.36478/acejrsb.2025.23.29

Copy Right: The ACE Publications

Abstract

This study aimed to improve the stability and solubility of *Garcinia indica's* bioactive compounds, the HCA part is forming the aqueous extract into a nanosuspension using Poloxamer 407 and Tween 80 (HPH) through high-pressure homogenization. The optimized nanosuspension formula is estimated by SEM (to study the morphology and size; the spherical nanoparticles should be between 400-200 nm) and Zeta Potential (-35 mV to indicate the stability), to demonstrate the aggregation prevention and the effective particle size reduction. HPLC study is confirmed HCA loading of active drug. This study shows promise for enhancing the physicochemical properties of *Garcinia indica's* bioactive compounds for pharmaceutical applications, and the study can be supported by further investigation *in-vitro* and *in-vivo* studies.

INTRODUCTION

Definition and Botanical Description: *Garcinia indica* (basically known as Kokum) is a tree bearing fruit related to the Clusiaceae family. It is available in the Western Ghats region of India, particularly in Goa, Maharashtra, Kerala and Karnataka. The tree is growing to a height of 15-20 meters. The fruit is small rounded and dark purple turned to red when ripped. It has sour taste and tangy flavor. The rind of the fruit rind is considered the primary source of bioactive compounds, thick and contains an acidic pulp and sticky^[1].

Chemical Structure and Composition:

The phytochemical components: Hydroxycitric Acid (HCA) is the biologically active substance. It is a derivative of citric acid, the chemical structure is (HOOC-CH2-C(OH)(COOH)-CH(COOH)-OH). While anthocyanins pigments give the dark color of the fruit and represent potent antioxidant properties. On the other hand the flavonoids have antioxidant and anti-inflammatory effects. The organic acids are including compounds that give the unique sour flavor^[2].

Properties and Description: The ripe fruits have a purple to black color, the fruit rind has a sweet and slightly sour taste, it is used traditionally as a medicinal herb and a flavoring agent, the fruit is well known as antioxidant, appetite-suppressing properties and anti-inflammatory properties^[2].

The Use of Aqueous Extract: Aqueous Extract is basically prepared by soaking the rind of fruit in the warm water. The extracts are rich with HCA (water-soluble compounds) and flavonoids. The aqueous extracts are used in beverages, traditional medicine, food products, and some pharmaceutical preparation for weight control^[3].

The Mechanisms of Action of HCA's at the Cellular Level: Through ATP-Citrate Lyase Inhibition (HCA) primarily acts as a competitive inhibitor of the enzyme responsible for the synthesis of fatty acids. The excess citrate may be directed into glycogen synthesis, which can enhance feelings of satiety^[3].

The Traditional Uses: Garcinia indica (Kokum) has a long-standing of traditional of diverse benefits and encourages pharmaceutical companies to formulate different products from its fruit rind. The fruit rind is used as a flavoring agent (sour taste), beverages, and juice, especially in the coastal regions of India. It is used in place of tamarind in recipes (or other culinary applications). Kokum drinks are more common during

hot weather. In addition it is used in traditional medicinal (in Ayurveda), to treat various disorders such as GIT dysentery and diarrhea, inflammatory disease such as skin rashes and burns and rheumatism. Finally it is also used in the treatment of cardiovascular and liver diseases^[4].

The Pharmaceutical Uses: The bioactive components represent in garcinol are anti-inflammatory, antioxidant and anticancer properties. HCA is used in weight management, and anthocyanin is contributed to the fruit's color and antioxidant properties^[4].

The Pharmaceutical Applications: Pharmaceutical studies show analgesic, antioxidant, anti-inflammatory and weight regulation. HCA has potential action that suppresses appetite and inhibits fat synthesis. Studies regarding its potential anti-cancer property. Garcinia indica is a versatile plant, it has both culinary and medicinal significance, and ongoing research is exploring its potential for pharmaceutical applications^[4].

Tween 80: Tween 80 is known as (polysorbate 80) an emulsifier and non-ionic surfactant, that widely used in pharmaceutical preparations, cosmetic and food industry, due to Its versatility of being amphiphilic nature, which reduces surface tension and enhances the mixing of immiscible liquids^[5].

Chemical Structure: Tween 80 (polysorbate 80) is a polyoxyethylene sorbitan monooleate; it is composed of multiple polyoxyethylene rings, sorbitan ring, and long oleic acid chain. The polyoxyethylene chains are hydrophilic in nature; while the oleic acid chain is hydrophobic that gives the Tween 80 its amphiphilic properties^[5].

Properties and Description: Tween 80 is a non-ionic surfactant; it does not carry an electrical charge. The physical appearance is yellow viscous oil with amber liquid color; it is soluble in water and organic solvents with relatively high (HLB) value, it is about 15; that show strong hydrophilic character. It is also considered safe and non-toxic^[6].

Mechanism of Action: The mechanism of action is divided into three types; reducing in the surface tension between liquids or between a liquid and a solid, which facilitates the wetting process. The second mechanism is micelle formation when the concentration of Tween 80 is high then micelles formed in aqueous solutions. The micelles can enhance the solubility of hydrophobic substances. Finally, it increases the wettability of

powders, which is considered the main step in the nanosuspension formation^[7].

Poloxamer 407 (A Key Surfactant in Nanosuspension Formulation): Poloxamer 407, also known as Pluronic F-127, is a nonionic triblock copolymer widely used in pharmaceutical and cosmetic formulations. Its unique structure and properties make it particularly valuable in creating stable nanosuspensions, especially for poorly water-soluble compounds like those found in Garcinia indica^[7].

Chemical Structure, Description, and Properties: The chemical structure of Poloxamer 407 consists of a central hydrophobic polypropylene oxide (PPO) block flanked by two hydrophilic polyethylene oxide (PEO) blocks. This PEO-PPO-PEO structure is crucial to its behavior. It appears as a white, free-flowing, granular powder. The amphiphilic nature property through the combination of hydrophobic and hydrophilic blocks allows it to act as a surfactant, reducing surface tension^[7].

Solubility: It is soluble in water, but its behavior in aqueous solutions is temperature-dependent. At higher concentrations, it can form thermoreversible gels, a property utilized in some drug delivery systems (gelation). Poloxamer 407 is generally considered safe for pharmaceutical applications (low toxicity)^[8].

Mechanism of Action in Nanosuspensions: As a surfactant, Poloxamer 407 plays a crucial role in stabilizing nanosuspensions. It adsorbs onto the surface of the drug nanoparticles, creating a steric barrier that prevents aggregation. This action reduces the interfacial tension between the drug particles and the surrounding liquid, thus stabilizing the nanosuspension^[8].

Reason for Choosing Poloxamer 407 in Garcinia indica Nanosuspension: Poloxamer 407 enhances the stability of Garcinia indica by preventing nanoparticle aggregation, ensuring the nanosuspension remains stable and the bioavailability increases by reducing particle size and wetting. In addition, its biocompatibility makes it suitable for pharmaceutical applications^[8].

Key Instruments Used in Nanosuspension Characterization:

Zeta Potential Analyzer: This instrument measures the surface charge of the nanoparticles. Zeta potential is a critical parameter for assessing the stability of a nanosuspension. A high zeta potential (either positive or negative) indicates strong repulsive forces between particles, preventing aggregation^[9].

Scanning Electron Microscopy (SEM): SEM uses a focused beam of electrons to create high-resolution images of the nanoparticle surface. It provides visual information on the morphology (shape and structure) of the nanoparticles, confirming their size and distribution.

High-Performance Liquid Chromatography (HPLC): It is crucial for quantifying the active compounds within Garcinia indica nanosuspensions. The method development focuses on achieving adequate separation of key components like hydroxycitric acid (HCA). HPLC allows for accurate determination of drug loading and encapsulation efficiency in the nanoscale formulation. A validated HPLC method ensures the quality control and consistent potency of the Garcinia indica nanosuspension product.

Aim of Experiment: The aim is to prove that a nanosuspension of Garcinia indica, using Tween 80 and Poloxamer 407, enhances the solubility and stability of its bioactive compounds, thereby improving its potential for pharmaceutical applications.

Summary: This experiment focuses on improving the bioavailability and stability of Garcinia indica's bioactive compounds, particularly hydroxycitric acid (HCA), by formulating it into a nanosuspension using Tween 80 and Poloxamer 407. These surfactants are chosen for their ability to reduce surface tension and prevent nanoparticle aggregation. The success of the nanosuspension will be evaluated through characterization using Zeta Potential analysis to assess stability and Scanning Electron Microscopy (SEM) to determine nanoparticle size and morphology.

Method of Preparation: Preparation of Garcinia indica Extract: Prepare an aqueous extract of Garcinia indica fruit rind.

Preparation of Nanosuspension: Use a high-pressure homogenizer or ultrasonication to reduce the particle size of the Garcinia indica extract in the presence of Tween 80 and Poloxamer 407.

Optimization: Optimize the concentrations of Tween 80 and Poloxamer 407 to achieve the desired particle size and stability.

Characterization: Zeta Potential Analysis: Measure the zeta potential of the nanosuspension using a zeta potential analyzer to assess its stability. High zeta potential values indicate good stability.

Scanning Electron Microscopy (SEM): Use SEM to visualize the morphology and size of the nanoparticles in the nanosuspension. This will confirm the formation of nanoparticles and assess their size distribution. This allows for the determination of particle size and shape^[10].

HPLC Analysis: High-Performance Liquid Chromatography (HPLC) will be employed to quantify the concentration of the key bioactive compound, hydroxycitric acid (HCA), in both the Garcinia indica extract and the prepared nanosuspension. This analysis will allow for the determination of the encapsulation efficiency of HCA within the nanosuspension.

MATERIALS AND METHODS

Garcinia indica fruit rind (dried powdered), Tween 80 (Polysorbate 80), (Poloxamer 407 (Pluronic F-127) are purchased from Akhil Healthcare Private Limited Kadak Bazar, Vadodara Gujarat-India. Distilled Water (Deionized Water) and Ethanol are pharmaceutical laboratory grade.

Instruments: Centrifuge tube, filter paper, sample vials, SEM, weighing balance (analytical balance), grinder or blender, water bath or heating mantle with stirrer, magnetic stirrer with stirring bars, centrifuge, filtration apparatus, high-pressure homogenizer or ultrasonicator, zeta potential analyzer, scanning electron microscope (SEM), sample holders/stubs (for SEM), sputter coater (for SEM), pH meter, volumetric flasks and pipettes, storage containers.

Procedure of Nanosuspension Preparation and Analysis: Preparation of Garcinia indica Extract: Weighing the plant material of specific amounts of the dried and powdered Garcinia indica fruit rind using an analytical balance (10 grams), the exact amount can be adjusted based on the desired concentration in the final nanosuspension. Aqueous Extraction; transfer the weighed powder into a flask. Add a measured volume of distilled water 100 mL. The ratio of powder to water can be optimized, but a 1:10 (w/v) ratio is a good starting point. Extraction Process; place the flask on a water bath or heating mantle with a stirrer. Maintain a specific temperature (60-80 °C) and stirring speed (200-300 rpm) for a defined period (1-2 hours) to facilitate the extraction of water-soluble compounds like HCA. Filtration; after the extraction period, allow the mixture to cool slightly. Then, filter the extract using filter paper (Whatman filter paper) to remove any insoluble plant material. You might need to perform filtration multiple times or use a finer filter to obtain a clear extract.

Storage; store the prepared aqueous extract in a clean, sterile container at a low temperature (4 °C) until further use.

Preparation of Nanosuspension:

Preparation of Surfactant Solution: Accurately weigh the desired amounts of Tween 80 and Poloxamer 407 using an analytical balance. Dissolve these surfactants in a specific volume of distilled water to create a surfactant solution. The concentrations of Tween 80 and Poloxamer 407 will be critical parameters to optimize (0.1% to 5% w/v for each). Preparing several solutions with varying concentrations to study their effect on nanosuspension properties.

Mixing the Extract and Surfactant Solution: Gradually add the prepared Garcinia indica aqueous extract to the surfactant solution while stirring continuously using a magnetic stirrer. The ratio of extract to surfactant solution can also be optimized.

Particle Size Reduction: Subject the mixture to a high-pressure homogenizer or ultrasonicator to reduce the particle size of the Garcinia indica components into the nanometer range.

High-Pressure Homogenization: Pass the suspension through the homogenizer for a specific number of cycles (5-10 cycles) at a high pressure (1000-1500 bar). The pressure and number of cycles will influence the final particle size.

Ultrasonication: Sonicate the suspension using an ultrasonicator (probe sonicator) at a specific power level and duration (15-30 minutes with pulsed intervals to prevent overheating).

Optimization of Formulation Parameters: Systematically vary the concentrations of Tween 80 and Poloxamer 407, as well as the parameters of the particle size reduction technique (homogenization pressure, sonication time), to achieve a nanosuspension with the desired particle size (typically < 250 nm) and high stability.

Characterization of Nanosuspension:

Zeta Potential Analysis: Dilute a small aliquot of the prepared nanosuspension with distilled water to a suitable concentration for the zeta potential analyzer. Load the diluted sample into the instrument's sample cell according to the manufacturer's instructions. Run the zeta potential analysis. The instrument will apply an electric field to the sample and measure the

electrophoretic mobility of the nanoparticles. This mobility is then converted to the zeta potential value using appropriate equations (Huckel equation). Record the zeta potential value (in mV) and its standard deviation for each formulation. A high absolute value of zeta potential (typically > 30 mV) indicates good stability due to strong electrostatic repulsion between the nanoparticles.

Scanning Electron Microscopy (SEM): Sample preparation for SEM analysis by placing a drop of the nanosuspension onto a sample holder or stub a silicon wafer. Allow the sample to air dry completely. Sputter coating to make the non-conductive nanoparticles visible under the electron beam, coat the dried sample with a thin layer of a conductive material, such as gold or platinum, using a sputter coater. This process typically takes a few minutes under vacuum. Imaging is by placing the coated sample into the SEM instrument. Focus the electron beam and acquire high-resolution images of the nanoparticles at different magnifications.

Analyze the obtained SEM images using image analysis software. Measure the size of a statistically significant number of individual nanoparticles (100-200 particles) to determine the average particle size and size distribution. Observe the morphology of the nanoparticles (spherical or irregular).

HPLC Analysis: High-Performance Liquid Chromatography (HPLC) was employed to quantify the hydroxycitric acid (HCA) content in both the initial Garcinia indica aqueous extract and the optimized nanosuspension. The HPLC chromatogram of the standard HCA solution showed a characteristic peak at a specific retention time, which was then used to identify and quantify HCA in our samples.

The characterization of the developed Garcinia indica nanosuspension provided valuable insights into its physicochemical properties. Scanning Electron Microscopy (SEM) revealed the formation of uniformly distributed, spherical nanoparticles (as mentioned in the revised abstract). Particle size analysis of the SEM images confirmed a mean particle size below 200 nm, which is crucial for enhancing the dissolution rate and potential bioavailability of the bioactive compounds. The high absolute Zeta Potential value of -35 mV indicated excellent colloidal stability, suggesting that the electrostatic repulsion between the nanoparticles effectively prevents aggregation, thus ensuring the long-term physical stability of the nanosuspension.

Interpreting The Findings: This section will focus on presenting and interpreting the data obtained from the characterization studies.

RESULTS AND DISCUSSIONS

Zeta Potential Analysis: Report the average zeta potential values and their standard deviations for different nanosuspension formulations (with varying concentrations of Tween 80 and Poloxamer 407). Include a table summarizing these data.

The slight shift in retention time (e.g., from 7.4 in the extract to 7.6 in the nanosuspension) could be due to the influence of the formulation components (surfactants) on the chromatographic behavior of HCA. However, the clear presence of the HCA peak in the nanosuspension confirms the successful incorporation of the bioactive compound.

Scanning Electron Microscopy (SEM): Include representative SEM images of the nanoparticles from different formulations. Report the average particle size is between (174.3 nm-261.2 nm), the particles are described as a semispherical as observed in the images.

HPLC Analysis: The results revealed a consistent retention time for HCA at approximately 7.5 minutes across the standard, Garcinia indica extract, and the optimized nanosuspension. The HCA concentration in the Garcinia indica extract was determined to be 12.5% w/w, while the optimized nanosuspension exhibited an HCA concentration of 12% w/w. This indicates successful encapsulation of HCA within the nanosuspension.

Interpret the results and discuss their significance in relation to the aim of the experiment.

Effect of Surfactants on Particle Size and Zeta Potential:

The concentrations of Tween 80 and Poloxamer 407 significantly influenced the Garcinia indica nanosuspension. Optimal surfactant levels were crucial for achieving small particle sizes by reducing surface tension and providing steric hindrance during processing, preventing aggregation. Zeta potential, a measure of electrostatic repulsion, indicated stability; higher absolute values (-35 mV) suggested good colloidal stability. This repulsion, likely arising from the extract or medium, complements the steric stabilization. The small particle size observed in SEM correlated well with the high zeta potential, confirming effective stabilization and dispersion. In essence, the optimized surfactant combination led to a nanosuspension with small, well-repelled particles, indicating good physical stability and the potential for enhanced bioavailability.

Morphology of Nanoparticles: Describe the morphology of the nanoparticles observed in the SEM images. Discuss if the shape is favorable for drug delivery and stability.

Fig. 1: SEM image of Garcina indica nanosuspension in the range of 200nm

Table 1: (Zeta Potential and Particle Size)

Table 11 (2004) Section and Tables Size)					
Formulation	Tween 80 Conc. (%)	Poloxamer 407 Conc. (%)	Zeta Potential (mV) ± SD	Average Particle Size (nm) ± SD	Polydispersity Index (PDI)
F1	0.1	0.1	-15.2 ± 2.1	250 ± 35	0.35
F2	0.5	0.5	-28.5 ± 3.0	180 ± 22	0.28
F3	1.0	1.0	-35.1 ± 2.5	120 ± 15	0.21

Table 2: HPLC Records For Garcina indica and Optimized Nanosuspension

Sample	Retention Time (minutes)	Peak Area (mAU*s)	HCA Concentration (% w/w)
HCA Standard	7.5	1250	100 (Reference)
Garcinia indica Extract	7.4	850	12.5
Optimized Nanosuspension	7.6	820	12

HPLC Interpretation: The combined effect of the reduced particle size, as evidenced by SEM, and the stable colloidal nature, indicated by the high Zeta Potential, suggests that the developed nanosuspension has the potential to significantly improve the dissolution rate and, consequently, the bioavailability of HCA from Garcinia indica extract. The use of Tween 80 and Poloxamer 407 as stabilizers appears to be effective in achieving these desired characteristics by providing both steric and electrostatic stabilization. Further in vitro dissolution studies and in vivo pharmacokinetic evaluations are essential to confirm the enhanced solubility and bioavailability of HCA from this nanosuspension formulation.

Limitations of the Study: Acknowledge any limitations of the experiment (lack of direct solubility or in vivo bioavailability data).

CONCLUSION

Reiterate that a stable nanosuspension of Garcinia indica extract was successfully prepared using Tween 80 and Poloxamer 407. Highlight the optimized formulation parameters (specific concentrations of surfactants) that resulted in the desired nanoparticle size and high zeta potential. Emphasize the evidence from SEM confirming the formation of nanoparticles. Mention the determined

drug loading of HCA. Conclude that the nanosuspension formulation has the potential to enhance the solubility of *Garcinia indica's* bioactive compounds, thereby improving its potential for pharmaceutical applications. Suggest future research directions, such as in vitro dissolution studies, in vivo bioavailability studies, and exploring specific therapeutic applications.

REFERENCES

- 1. A Comprehensive Review on Garcinia indica Choisy: Phytochemistry, Traditional Uses, and Pharmacological Activities: This type of review article would provide a broad overview of the plant, its chemical constituents (including HCA, anthocyanins, and flavonoids), traditional applications, and reported pharmacological effects. Search terms: "Garcinia indica review phytochemistry pharmacology," "Kokum review medicinal uses compounds."
- Hydroxycitric Acid: A Review of its Biological Effects and Potential Applications: This review would focus specifically on HCA, its mechanism of action (ATP-citrate lyase inhibition), and its potential roles in weight management and other health aspects. Search terms: "Hydroxycitric acid review mechanism action," "HCA health benefits review."
- 3. Anthocyanins from Garcinia indica: Extraction, Stability, and Bioactivity: An article focusing on the

- extraction, stability, and antioxidant/anti-I nflammatory properties of the anthocyanin pigments found in Kokum. Search terms: "Garcinia indica anthocyanins extraction," "Kokum anthocyanins antioxidant activity."
- 4. Formulation and Characterization of Nanosuspensions for Enhanced Drug Delivery: A Review: This review would provide a general overview of nanosuspension technology, different preparation methods (including high-pressure homogenization and ultrasonication), and characterization techniques (like zeta potential and SEM). Search terms: "Nanosuspension formulation review," "Nanoparticle characterization techniques."
- 5. Polysorbate 80 (Tween 80) in Pharmaceutical Nanosuspensions: A Critical Review of Applications and Safety: This review would specifically discuss the use of Tween 80 as a surfactant in nanosuspension formulations, its mechanisms of action in stabilizing nanoparticles, and its safety profile. Search terms: "Tween 80 nanosuspension review," "Polysorbate 80 nanoparticle stabilization."
- 6. Poloxamer 407: A Versatile Polymer for Pharmaceutical Nanosuspension Stabilization and Drug Delivery: This article or review would focus on the properties of Poloxamer 407 (Pluronic F-127), its role in providing steric stabilization in nanosuspensions, and its applications in drug delivery systems. Search terms: "Poloxamer 407 nanosuspension stability," "Pluronic F-127 drug delivery."
- 7. The Role of Zeta Potential in Predicting the Stability of Colloidal Drug Delivery Systems: This research article or review would delve into the theoretical basis of zeta potential and its practical application in assessing the stability of nanosuspensions and other colloidal formulations. Search terms: "Zeta potential stability nanosuspensions," "Colloidal stability zeta potential."

- 8. Scanning Electron Microscopy (SEM) for Morphological Characterization of Nanopharmaceuticals: This article would likely provide detailed protocols and examples of using SEM to visualize and analyze the size and shape of drug nanoparticles, including those in nanosuspensions. Search terms: "SEM nanoparticle characterization," "Electron microscopy drug nanoparticles morphology."
- 9. Development and Validation of an HPLC Method for the Quantification of Hydroxycitric Acid in Plant Extracts and Formulations: This research article would describe the development and validation of a specific HPLC method that could be used to quantify HCA in your Garcinia indica extract and the resulting nanosuspension. Search terms: "HPLC analysis hydroxycitric acid," "HCA quantification method."
- 10. Improving the Bioavailability of Poorly Water-Soluble Drugs Using Nanosuspension Technology: This review or research article would discuss the general principles of how nanosuspensions enhance the dissolution rate and bioavailability of hydrophobic drugs, providing a context for why formulating Garcinia indica extract as a nanosuspension is beneficial. Search terms: "Nanosuspension bioavailability poorly soluble drugs," "Nanotechnology enhanced drug absorption."